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Hamiltonian Dynamics



Hamiltonian Dynamics

Setting

Even-dimensional manifold W .

Non-degenerate closed 2-form ω.

Hamiltonian function H : W → R.

Hamiltonian vector field is defined by

iXH
ω = −dH.

Hamiltonian system is a dynamical system defined by XH .

Note. XH preserves ω, so Hamiltonian flow FlXH
t is a

symplectomorphism.
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Hamiltonian Dynamics

Example 1. W = T ∗Rn, ω =
∑

dpi ∧ dqi where (q, p) ∈ T ∗Rn.

Mechanical Hamiltonian

H(q, p) =
1

2
|p|2 + U(q).

Then we have

q̇ = p, ṗ = −∇U(q).

This is Newton’s second law, which governs the classical mechanics.

Example 2. (M, g) Riemannian, W = T ∗M , ω =
∑

dpi ∧ dqi locally.

H(q, p) =
1

2
|p|2g.

This Hamiltonian gives the geodesic flow.
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Integral of Motion

F : W → R is an integral of motion if F is invariant under XH -flow.

Poisson bracket {F,H} = ω(XF , XH) = dF (XH) measures invariance.

If F is an integral of motion of H, then Fl
XH+F

t = FlXH ◦ FlXF .

A continuous symmetry (Hamiltonian G-action) gives an integral.

(Arnold-Liouville) If there exist n Poisson-commuting integrals

F1, · · · , Fn on (W 2n, ω) of which the differentials are linearly

independent, there are coordinates under which Fl
XFi
t are linear.

Call this an integrable system, and the coordinates action-angle

coordinates.
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Periodic Orbits

Main interest : Periodic orbits of a given Hamiltonian,

γ : [0, τ ] → W such that γ̇(t) = XH(γ(t)), γ(0) = γ(τ).

How many are there? How do they behavior?

Critical point of the action functional defined on the loop space.

(Weak) Arnold Conjecture : #{Periodic Orbits} ≥
∑

dimHi(W )

⇒ Connection between (symplectic) topology and dynamics.

Generator of a Floer chain complex.

Practical purposes. (space mission design)
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Conley-Zehnder Index

A periodic orbit γ is non-degenerate if ker(dF lXH
1 (x)− Id) = ⟨XH⟩.

If γ is non-degenerate, there are no other periodic orbits near γ.

Non-degenerate γ : Conley-Zehnder index µCZ(γ) ∈ Z.

Degenerate family Σ : Robbin-Salamon index µRS(Σ) ∈ 1
2Z.

Well-defined if ⟨π2(W ), c1(TW )⟩ = 0.

Can be regarded as a ‘symplectic rotation number’.

For geodesics, µCZ is Morse index of the energy (length) functional.

Direct computation (by hand) needs local coordinates.
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CZ-Index and Bifurcation

Let γc ∈ H−1(c) be a 1-parameter family of orbits with energy c.

Varying c, µCZ(γc) doesn’t change until γc degenerates.

When γc degenerates, bifurcation occurs.

(Another orbits can be born, vanish, etc.)

µCZ(γc) helps us to keep track of bifurcation.

Also, we can compute the indices via the invariance of the homology

and Morse-Bott spectral sequence.
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CZ-Index and Bifurcation
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Figure 1: Toy model of a bifurcation and CZ-index
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Rotating Kepler Problem



Restricted Three-body Problem

Restricted three-body problem described the motion of a mass-less

body under the gravitational force of two bodies.

Ht(q, p) =
1

2
|p|2 − µ

|q −M(t)|
− 1− µ

|q − E(t)|
.

Ht is defined on T ∗(R3 \ {E(t),M(t)}).

µ: mass-ratio (0 ≤ µ ≤ 1/2).

M(t): the position of the Moon.

E(t): the position of the Earth.

Problem : H is time-dependent, and even may not be periodic.

Dongho Lee Rotating Kepler Problem August 21st, 2025 9/43



Circular Restricted Three-body Problem

Assume the motion of two bodies is planar and circular :

M(t) = (1− µ)(cos t,− sin t, 0), E(t) = −µ(cos t,− sin t, 0).

Using rotating frame by adding the angular momentum L3, we have

H(q, p) =
1

2
|p|2 − µ

|q −M |
− 1− µ

|q − E|
+ (q1p2 − q2p1).

where M = (1− µ, 0, 0), E = (−µ, 0, 0).

H is now time-independent. We call this Jacobi energy, and this

Hamiltonian defines circular restricted three-body problem (CRTBP).
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Circular Restricted Three-body Problem
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Figure 2: Simple illustration of CRTBP.
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Rotating Kepler Problem

Case. µ = 0, i.e., Moon is mass-less.

The following Hamiltonian defines the rotating Kepler problem (RKP).

H(q, p) =
1

2
|p|2 − 1

|q|
+ (q1p2 − q2p1).

We call H Jacobi energy.
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Kepler Problem

The classical Kepler problem (two-body problem) is defined by

E(q, p) =
|p|2

2
− 1

|q|
.

We call E Kepler energy.

Note that H = E + L3, where L3 is an angular momentum.

Kepler’s Laws

1. The XE-orbits are conic sections with one focus at 0.

2. The areal velocity is constant.

3. For elliptic orbits, τ = 2π/(−2E)3/2.
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Hill’s Region

We can rewrite the Hamiltonian of RKP as

H(q, p) =
1

2

(
(p1 − q2)

2 + (p2 + q1)
2
)
− 1

|q|
− q21 + q22

2

=
1

2
|p̃|2 + U(q)

We call U effective potential.

For the energy level c, we have H(q, p) = c ⇒ U(q) ≤ c.

U has one critical value c0 = −3/2, and so does H.

Call this critical energy.
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Hill’s Region

Hill’s region is defined by

Rc =
{
q ∈ R3 : U(q) ≤ c

}
= pr1H

−1(c).

For RKP, Rc has one bounded component and one unbounded

component for c < c0, and is unbounded for c > c0.

Figure 3: Hill’s region of RKP for c < −3/2.
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Regularization

Under c0, the singularity at the origin of RKP can be regularized via

Moser regularization, which embeds the system into T ∗S3.

The collision orbits are added.

q1

q2

This orbit oscillates between the origin and the highest point.

The Kepler problem is embedded into the standard geodesic flow.

[CFvK14] RKP is embedded into a Finsler geodesic flow.
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Integrals of Kepler Problem

Moser regularization gives the standard geodesic flow of T ∗S3.

⇒ Kepler problem has SO(4)-symmetry, which is 6-dimensional.

Idea. Choose 2 axis among x0, x1, x2, x3. (say x0 is additional.)

If we choose among x1, x2, x3, we get angular momentum L.

If we choose x0 and xi, we get Laplace-Runge-Lenz vector,

A = p× L− q

|q|
.

1. A is parallel to the major axis of the ellipse.

2. The length |A| is equal to the eccentricity of the ellipse.
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Integrals of Kepler Problem

A Kepler orbit is completely characterized by E, L and A.

Additional relations : ε2 = |A|2 = 2E|L|2 + 1, ⟨L,A⟩ = 0.
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Space of Periodic Orbits

Theorem ([Lee25], ArXiv preprint)
Let E < 0, and ME be the space consists of simple Kepler orbits with

Kepler energy E. Then the following map is a well-defined bijection.

Φ : ME → S2 × S2

γ 7→ (
√
−2EL−A,

√
−2EL+A)

S2 × S2 is the space of simple geodesics on the round S3.

Li, Ai serves as a Morse function on ME .

Orbits with same L3 forms S3-family. (handle attachment)
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Space of Periodic Orbits

γ- γ+

γc +

γc -

S3 - family

S1

T2

collision and vertical

planar and circular
L3

-A3

Figure 4: A diagram of ME ≃ S2 × S2.
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Periodic Orbits of Rotating Kepler Problem

XL3 -flow is 2π-periodic rotation on q1q2-plane.

{E,L3} = 0, so FlXH
t = FlXE

t ◦ Fl
XL3
t .

There are four XE-orbits which lie in the bounded component of Hill’s

region and are invariant under XL3 -flow :

Retrograde orbit γ+ : Planar circular orbit which rotates

counterclockwise (L3 > 0), has a smaller radius.

Direct orbit γ− : Planar circular orbit which rotates clockwise

(L3 < 0), has a larger radius.

Vertical collision orbits (north, south) γc± .

These orbits exist for any c < −3/2.
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Non-degenerate Orbits

Figure 5: Non-degenerate periodic orbits of RKP.
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Periodic Orbits of Rotating Kepler Problem

General XH -orbit is periodic if kτ = 2πl, where τ = 2π/(−2E)3/2.

⇒ E = Ek,l = − 1
2

(
k
l

)2/3
.

A family with E = Ek,l and L3 = c− Ek,l forms S3-family, Σk,l.
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q1

1.2
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Bifurcation

Energy condition for γ± : ε2 = 2EL2
3 + 1 = 2E(c− E)2 + 1 = 0.

Denote

c±k,l = Ek,l ±
1√

−2Ek,l

.

Varying H = c, we have following orbits with E = Ek,l.

1. c < c−k,l : No periodic orbit.

2. c = c−k,l : (k − l)-th cover of direct orbit.

3. c−k,l < c < c+k,l, c ̸= Ek,l : Σk,l-type orbits (S3-family)

c = Ek,l : Singular family, containing γc± .

4. c = c+k,l : (k + l)-th cover of retrograde orbit.

5. c > c+k,l : No periodic orbit.
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Bifurcation
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Figure 6: Bifurcation diagram at E = E8,1.
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Conley-Zehnder Index

Theorem ([Lee25], ArXiv preprint)

Orbits Initial Index Index Change

Retrograde γN
+

µCZ = 4N − 2

if c < c+N−1,1

−4 at c = c+N−k,k

for k = 1, . . . , N − 1.

Direct γN
−

µCZ = 4N + 2

if c < c−N+1,1

+4 at c = c−N+k,k

for k = 1, 2, . . .

Vertical Collisions γN
c± µCZ = 4N No change

Σk,l-family µRS = 4k − 1/2 -

[AFFvK13] computed the index for the planar problem, and the result for

γN
± is exactly the half.
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CZ-Index and Symplectic Homology

We can regard the generators of SHS1,+
∗ (T ∗S3) as periodic orbits of

RKP, graded by µCZ .

It’s known that

SHS1,+
∗ (T ∗S3) ≃


Q ∗ = 2.

Q2 ∗ = 2k ≥ 4.

0 otherwise.

Up to a specific degree, we have periodic orbits of

index 2 : Simple retrograde γ+.

index 4N + 2 : Retrograde γN+1
+ and direct γN

− .

index 4N : Vertical collisions γN
c± .

Dongho Lee Rotating Kepler Problem August 21st, 2025 27/43



CZ-Index and Bifurcation
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Figure 7: Brief diagram of the change of CZ index and bifuraction.
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Morse-Bott Spectral Sequence
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Morse-Bott spectral sequence at c−8,1.
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Three-Body Problem



Lagrange Points

Again, the effective potential U(q) is given by

H(q, p) =
1

2

(
(p1 − q2)

2 + (p2 + q1)
2
)
− µ

|q −M |
− 1− µ

|q − E|
− q21 + q22

2

=
1

2
|p̃|2 + U(q).

There are 5 critical points for 0 < µ ≤ 1/2, called Lagrange points.

1. U(ℓ1) < U(ℓ2) ≤ U(ℓ3) < U(ℓ4) = U(ℓ5).

2. ℓ1, ℓ2, ℓ3 lies on the q1-axis, while ℓ4, ℓ5 are not.

3. The topology of Hill’s region changes through H(ℓi)’s.
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Hill’s Region
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Figure 8: Hill’s regions for energies in (−∞, H(ℓ1)), (H(ℓ1), H(ℓ2)),

(H(ℓ2), H(ℓ3)) and (H(ℓ3), H(ℓ4)).

For c < H(ℓ1), Moser regularization for each component is still valid.

For higher energies, other regularization methods are developed.

(Birkhoff regularization, Kustaanheimo-Stiefel regularization, etc.)
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Contact Structure and Convexity

The Moser-regularized Hamiltonian is K : T ∗S3 → R.

Topologically, K−1(c) ≃ S3 × S2. (sphere sub-bundle over the base.)

K−1(c) fiberwise star-shaped ⇒ K−1(c) is naturally a contact

manifold, and XK is parallel to its Reeb flow.

⇒ We can use tools of symplectic geometry, e.g. SH.

K−1(c) fiberwise convex ⇒ XK is the Finsler geodesic flow of some

Finsler metric on S3, and µCZ ≥ 0.
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Contact Structure and Convexity

[AFvKP12] For planar problem, there exists ε > 0 such that for

c < H(ℓ1) + ε, (except c = H(ℓ1)) bounded components of Hill’s

region are fiberwise star-shaped.

[CJK20] Same result for the spatial CRTBP.

[Nic21] For c > H(ℓ4), there exists an orbit with negative action,

i.e., there is no contact structure.

We expect that there exists a contact structure for c < H(ℓ2), but

don’t have any clue for a simple proof.

[Cho24] For planar problem, for c < −3, the moon’s component is

fiberwise convex.

[CLS25] (In preparation) For spatial problem, for c ≤ c0 < H(ℓ1)

where c0 ≃ −3.284 + 0.854µ, the moon’s component is fiberwise

convex.
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Birkhoff Shooting Method

Theorem (Birkhoff)

For 0 < µ < 1 and c < H(ℓ1), there exists a solution of CRTBP

(q1, q2) : [0, τ ] → R× (−∞, 0] such that

1. q2(0) = q2(τ) = 0.

2. q′1(0) = q′1(τ) = 0.

3. ℓ3 < q1(0) < −µ < ℓ1.

Figure 9: Birkhoff Shooting Method (courtesy of Otto van Koert)
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Birkhoff Shooting Method

Some aspects of the Birkhoff shooting method :

1. This provides us a periodic orbit, a candidate of a retrograde orbit.

2. Analytically, the uniqueness of such orbit is not proven,

3. Also, the existence of a direct orbit with this method is not proven.

4. [JvK25] provides some optimistic numerical results.

Some candidates of the definition of retrograde orbit :

The orbit with the smallest period (or shortest length).

The orbit obtained by Birkhoff shooting method.

The orbit with Conley-Zehnder index 2.

The orbit bifurcated from the retrograde orbit of RKP.
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Lyapunov Orbits

Theorem

For any 0 < µ < 1, there exists ε = ε(µ) > 0 such that for energy level

H(ℓi) < c < H(ℓi) + ε for i = 1, 2, 3,

there exists a smooth family of periodic orbits γc
i with energy c.

for each t, γc
i (t) converges uniformly to ℓi at c → H(ℓi).

We call these Lyapunov orbits.

Experimentally, the Lyapunov orbits survive for higher energy.

There exists a family of orbits which bifurcates between the

Lyapunov orbit and vertical collision orbit, called halo orbits.
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Euler Problem,

Hill’s Lunar Problem



Euler Problem

Assumption : Two centers are fixed.

H(q, p) =
|p|2

2
− µ

|q −M |
− 1− µ

|q − E|
.

This system is expected to give some insight for CRTBP above H(ℓ1).

1. Unique critical energy cJ = −1− 2
√
µ(1− µ).

2. Hill’s region is always bounded.

3. Moser regularization is valid for c < cJ .

4. [Kim18] Computation of CZ-indices of the planar problem under cJ .
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Periodic Orbits

The Euler problem is an integrable system.

1. Angular momentum L1 comes from S1-symmetry.

2. Another classical invariant G.

Inner and outer collisions are nondegenerate, works as γ± in RKP.
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Figure 10: Hill’s region and collision orbits.
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Hill’s Lunar Problem

Assumption : µ is small, and we’re very close to the moon.

1. Translate M to 0.

2. Take Taylor expansion of 1/|q −M | and 1/|q − E|-terms.

3. Rescale by factor µ2/3.

HHL(q, p) =
|p|2

2
− 1

|q|
+ (p1q2 − p2q1)− q21 +

q22
2

+
q23
2
.

We call this Hill’s lunar problem.

Practically, this provides a very nice approximation of CRTBP for µ ≪ 1.
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Hill’s Lunar Problem

1. One critical energy c0, and two critical points on q1-axis.

2. Moser regularization is valid for c < c0.

3. [Lee17] In planar problem, under c0, the level set is fiberwise convex.

4. [Ayd23] Linear symmteries are given by Z2 × Z2 × Z2.

We still have retrograde, direct, vertical collision and Lyapunov orbits.

However the system is not integrable, so any kind of analytic

computation is very hard.
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Hill’s Lunar Problem
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Figure 11: Hill’s region of Hill’s Lunar problem.

Dongho Lee Euler Problem,, Hill’s Lunar Problem August 21st, 2025 41/43



Bifurcation Diagram

[AFvK+] gave a bifurcation diagram from γ3
− to γ5

+ based on numerics.
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Further Works

1. Classify and compute the indices of non-degenerate orbits.

(Spatial Euler problem, Hill’s lunar problem, etc.)

2. Using the result to investigate the bifurcation of orbits.

3. Application to the three-body problem.
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Thank you for your attention!
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Appendix. Moser Regularization

Recipe for the Moser regularization of the Kepler problem

Take energy level E = E0.

Define

K̃0(q, p) =
1

2
(|q|(E(q, p))− E0) + 1)

2
=

1

2

(
1

2
(|p|2 − 2E0)|q|

)
.

Take switch map K̃(q, p) = K̃0(p,−q).

Apply stereographic projection to T ∗S3
r and get

K(x, y) =
r4

2
|y|2.

RKP and CRTBP can be regularized in the same way.
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Appendix. Finsler Metric

A Finsler metric is a continuous function F : TM → [0,∞) such that

1. F(v + w) ≤ F(v) + F(w).

2. F(λv) = λv if λ ≥ 0.

3. F(v) > 0 unless v = 0.

4. F is smooth on TM \ i0M .

We can define

gv(X,Y ) =
1

2

∂2

∂s∂t
F(v + sX + tY )2

∣∣∣∣
s,t=0

.

Example. Smooth submanifolds of a normed vector space.
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