Three-body Problem and Related Problems

Dongho Lee

August 21st, 2025

SNU, QSMS

Presented in 2025 QSMS Workshop, Goseong

Contents

- 1. Hamiltonian dynamics
- 2. Rotating Kepler Problem
- 3. Restricted Three-body Problem
- 4. Euler Problem, Hill's Lunar Problem
- N-1) Definition and motivation.
- N-2) Regularization and Hill's region.
- N-3) Periodic orbits.

Dongho Lee August 21st, 2025 1/43

Hamiltonian Dynamics

Hamiltonian Dynamics

Setting

- \bullet Even-dimensional manifold W.
- Non-degenerate closed 2-form ω .
- Hamiltonian function $H: W \to \mathbb{R}$.

Hamiltonian vector field is defined by

$$i_{X_H}\omega = -dH$$
.

Hamiltonian system is a dynamical system defined by X_H .

Note. X_H preserves ω , so Hamiltonian flow $Fl_t^{X_H}$ is a symplectomorphism.

Hamiltonian Dynamics

Example 1. $W = T^*\mathbb{R}^n$, $\omega = \sum dp_i \wedge dq_i$ where $(q,p) \in T^*\mathbb{R}^n$.

Mechanical Hamiltonian

$$H(q,p) = \frac{1}{2}|p|^2 + U(q).$$

Then we have

$$\dot{q} = p, \quad \dot{p} = -\nabla U(q).$$

This is Newton's second law, which governs the classical mechanics.

Example 2. (M,g) Riemannian, $W=T^*M$, $\omega=\sum dp_i\wedge dq_i$ locally.

$$H(q,p) = \frac{1}{2}|p|_g^2.$$

This Hamiltonian gives the geodesic flow.

Integral of Motion

 $F:W\to\mathbb{R}$ is an **integral of motion** if F is invariant under X_H -flow.

Poisson bracket $\{F, H\} = \omega(X_F, X_H) = dF(X_H)$ measures invariance.

- If F is an integral of motion of H, then $Fl_t^{X_{H+F}} = Fl^{X_H} \circ Fl^{X_F}$.
- A continuous symmetry (Hamiltonian *G*-action) gives an integral.
- (Arnold-Liouville) If there exist n Poisson-commuting integrals F_1, \cdots, F_n on (W^{2n}, ω) of which the differentials are linearly independent, there are coordinates under which $Fl_t^{X_{F_i}}$ are linear. Call this an **integrable system**, and the coordinates **action-angle coordinates**.

Periodic Orbits

Main interest: Periodic orbits of a given Hamiltonian,

$$\gamma:[0,\tau]\to W$$
 such that $\dot{\gamma}(t)=X_H(\gamma(t)),\ \gamma(0)=\gamma(\tau).$

How many are there? How do they behavior?

- Critical point of the action functional defined on the loop space.
- (Weak) Arnold Conjecture : $\#\{\text{Periodic Orbits}\} \ge \sum \dim H_i(W)$
 - ⇒ Connection between (symplectic) topology and dynamics.
- Generator of a Floer chain complex.
- Practical purposes. (space mission design)

Conley-Zehnder Index

A periodic orbit γ is **non-degenerate** if $\ker(dFl_1^{X_H}(x) - \operatorname{Id}) = \langle X_H \rangle$.

If γ is non-degenerate, there are no other periodic orbits near γ .

Non-degenerate γ : Conley-Zehnder index $\mu_{CZ}(\gamma) \in \mathbb{Z}$.

Degenerate family Σ : Robbin-Salamon index $\mu_{RS}(\Sigma) \in \frac{1}{2}\mathbb{Z}$.

- Well-defined if $\langle \pi_2(W), c_1(TW) \rangle = 0$.
- Can be regarded as a 'symplectic rotation number'.
- \bullet For geodesics, μ_{CZ} is Morse index of the energy (length) functional.
- Direct computation (by hand) needs local coordinates.

CZ-Index and Bifurcation

Let $\gamma_c \in H^{-1}(c)$ be a 1-parameter family of orbits with energy c.

- Varying c, $\mu_{CZ}(\gamma_c)$ doesn't change until γ_c degenerates.
- When γ_c degenerates, bifurcation occurs. (Another orbits can be born, vanish, etc.)
- \bullet $\;\mu_{CZ}(\gamma_c)$ helps us to keep track of bifurcation.
- Also, we can compute the indices via the invariance of the homology and Morse-Bott spectral sequence.

Figure 1: Toy model of a bifurcation and CZ-index

Rotating Kepler Problem

Restricted Three-body Problem

Restricted three-body problem described the motion of a mass-less body under the gravitational force of two bodies.

$$H_t(q,p) = \frac{1}{2}|p|^2 - \frac{\mu}{|q - M(t)|} - \frac{1 - \mu}{|q - E(t)|}.$$

 H_t is defined on $T^*(\mathbb{R}^3 \setminus \{E(t), M(t)\})$.

- μ : mass-ratio ($0 \le \mu \le 1/2$).
- \bullet M(t): the position of the Moon.
- \bullet E(t): the position of the Earth.

Problem : H is time-dependent, and even may not be periodic.

Circular Restricted Three-body Problem

Assume the motion of two bodies is planar and circular :

$$M(t) = (1 - \mu)(\cos t, -\sin t, 0), \quad E(t) = -\mu(\cos t, -\sin t, 0).$$

Using rotating frame by adding the angular momentum L_3 , we have

$$H(q,p) = \frac{1}{2}|p|^2 - \frac{\mu}{|q-M|} - \frac{1-\mu}{|q-E|} + (q_1p_2 - q_2p_1).$$

where $M = (1 - \mu, 0, 0)$, $E = (-\mu, 0, 0)$.

H is now time-independent. We call this **Jacobi energy**, and this Hamiltonian defines **circular restricted three-body problem** (CRTBP).

Circular Restricted Three-body Problem

Figure 2: Simple illustration of CRTBP.

Rotating Kepler Problem

Case. $\mu = 0$, i.e., Moon is mass-less.

The following Hamiltonian defines the rotating Kepler problem (RKP).

$$H(q,p) = \frac{1}{2}|p|^2 - \frac{1}{|q|} + (q_1p_2 - q_2p_1).$$

We call H Jacobi energy.

Kepler Problem

The classical Kepler problem (two-body problem) is defined by

$$E(q,p) = \frac{|p|^2}{2} - \frac{1}{|q|}.$$

We call E Kepler energy.

Note that $H = E + L_3$, where L_3 is an angular momentum.

Kepler's Laws

- 1. The X_E -orbits are conic sections with one focus at 0.
- 2. The areal velocity is constant.
- 3. For elliptic orbits, $\tau = 2\pi/(-2E)^{3/2}$.

Hill's Region

We can rewrite the Hamiltonian of RKP as

$$H(q,p) = \frac{1}{2} ((p_1 - q_2)^2 + (p_2 + q_1)^2) - \frac{1}{|q|} - \frac{q_1^2 + q_2^2}{2}$$
$$= \frac{1}{2} |\tilde{p}|^2 + U(q)$$

We call U effective potential.

For the energy level c, we have $H(q,p)=c\Rightarrow U(q)\leq c$.

U has one critical value $c_0 = -3/2$, and so does H.

Call this **critical energy**.

Hill's Region

Hill's region is defined by

$$\mathfrak{R}_c = \{ q \in \mathbb{R}^3 : U(q) \le c \} = \operatorname{pr}_1 H^{-1}(c).$$

For RKP, \Re_c has one bounded component and one unbounded component for $c < c_0$, and is unbounded for $c > c_0$.

Figure 3: Hill's region of RKP for c<-3/2.

Regularization

Under c_0 , the singularity at the origin of RKP can be regularized via **Moser regularization**, which embeds the system into T^*S^3 .

The **collision orbits** are added.

This orbit oscillates between the origin and the highest point.

- The Kepler problem is embedded into the standard geodesic flow.
- [CFvK14] RKP is embedded into a Finsler geodesic flow.

Integrals of Kepler Problem

Moser regularization gives the standard geodesic flow of T^*S^3 .

 \Rightarrow Kepler problem has SO(4)-symmetry, which is 6-dimensional.

Idea. Choose 2 axis among x_0, x_1, x_2, x_3 . (say x_0 is additional.)

If we choose among x_1, x_2, x_3 , we get **angular momentum** L.

If we choose x_0 and x_i , we get Laplace-Runge-Lenz vector,

$$A = p \times L - \frac{q}{|q|}.$$

- 1. A is parallel to the major axis of the ellipse.
- 2. The length |A| is equal to the eccentricity of the ellipse.

Integrals of Kepler Problem

A Kepler orbit is completely characterized by E, L and A.

Additional relations : $\varepsilon^2 = |A|^2 = 2E|L|^2 + 1$, $\langle L,A \rangle = 0$.

Space of Periodic Orbits

Theorem ([Lee25], ArXiv preprint)

Let E < 0, and \mathcal{M}_E be the space consists of simple Kepler orbits with Kepler energy E. Then the following map is a well-defined bijection.

$$\Phi: \mathcal{M}_E \to S^2 \times S^2$$
$$\gamma \mapsto (\sqrt{-2E}L - A, \sqrt{-2E}L + A)$$

- $S^2 \times S^2$ is the space of simple geodesics on the round S^3 .
- L_i, A_i serves as a Morse function on \mathcal{M}_E .
- ullet Orbits with same L_3 forms S^3 -family. (handle attachment)

Space of Periodic Orbits

Figure 4: A diagram of $\mathcal{M}_E \simeq S^2 \times S^2$.

Periodic Orbits of Rotating Kepler Problem

- X_{L_3} -flow is 2π -periodic rotation on q_1q_2 -plane.
- $\bullet \ \{E,L_3\} = 0 \text{, so } Fl_t^{X_H} = Fl_t^{X_E} \circ Fl_t^{X_{L_3}}.$

There are four X_E -orbits which lie in the bounded component of Hill's region and are invariant under $X_{L,o}$ -flow:

- Retrograde orbit γ_+ : Planar circular orbit which rotates counterclockwise $(L_3 > 0)$, has a smaller radius.
- Direct orbit γ_- : Planar circular orbit which rotates clockwise $(L_3 < 0)$, has a larger radius.
- Vertical collision orbits (north, south) $\gamma_{c_{\pm}}$.

These orbits exist for any c < -3/2.

Non-degenerate Orbits

Figure 5: Non-degenerate periodic orbits of RKP.

Periodic Orbits of Rotating Kepler Problem

General X_H -orbit is periodic if $k\tau = 2\pi l$, where $\tau = 2\pi/(-2E)^{3/2}$.

$$\Rightarrow E = E_{k,l} = -\frac{1}{2} \left(\frac{k}{l}\right)^{2/3}.$$

A family with $E=E_{k,l}$ and $L_3=c-E_{k,l}$ forms S^3 -family, $\Sigma_{k,l}$.

Bifurcation

Energy condition for γ_{\pm} : $\varepsilon^2 = 2EL_3^2 + 1 = 2E(c-E)^2 + 1 = 0$.

Denote

$$c_{k,l}^{\pm} = E_{k,l} \pm \frac{1}{\sqrt{-2E_{k,l}}}.$$

Varying H=c, we have following orbits with $E=E_{k,l}$.

- 1. $c < c_{kl}^-$: No periodic orbit.
- 2. $c = c_{k l}^-$: (k l)-th cover of direct orbit.
- 3. $c_{k,l}^- < c < c_{k,l}^+, \ c \neq E_{k,l}: \ \Sigma_{k,l}$ -type orbits (S^3 -family) $c = E_{k,l}:$ Singular family, containing $\gamma_{c\pm}.$
- 4. $c = c_{k,l}^+$: (k+l)-th cover of retrograde orbit.
- 5. $c > c_{k,l}^+$: No periodic orbit.

Figure 6: Bifurcation diagram at $E=E_{8,1}$.

Conley-Zehnder Index

Theorem ([Lee25], ArXiv preprint)

Orbits	Initial Index	Index Change
Retrograde γ_+^N	$\mu_{CZ} = 4N - 2$	-4 at $c=c_{N-k,k}^+$
	if $c < c_{N-1,1}^+$	for $k = 1,, N - 1$.
Direct γ^N	$\mu_{CZ} = 4N + 2$	$+4$ at $c=c_{N+k,k}^-$
	if $c < c_{N+1,1}^-$	for $k=1,2,\ldots$
Vertical Collisions $\gamma_{c_{\pm}}^{N}$	$\mu_{CZ} = 4N$	No change
$\Sigma_{k,l}$ -family	$\mu_{RS} = 4k - 1/2$	-

[AFFvK13] computed the index for the planar problem, and the result for γ_\pm^N is exactly the half.

CZ-Index and Symplectic Homology

We can regard the generators of $SH_*^{S^1,+}(T^*S^3)$ as periodic orbits of RKP, graded by μ_{CZ} .

It's known that

$$SH_*^{S^1,+}(T^*S^3) \simeq \left\{ \begin{array}{ll} \mathbb{Q} & *=2. \\ \mathbb{Q}^2 & *=2k \geq 4. \\ 0 & \text{otherwise.} \end{array} \right.$$

Up to a specific degree, we have periodic orbits of

- index 2 : Simple retrograde γ_+ .
- \bullet index 4N+2 : Retrograde γ_+^{N+1} and direct $\gamma_-^{N}.$
- \bullet index 4N : Vertical collisions $\gamma^N_{c_\pm}.$

Figure 7: Brief diagram of the change of CZ index and bifuraction.

Morse-Bott Spectral Sequence

Morse-Bott spectral sequence at $c_{8,1}^-$.

Three-Body Problem

Lagrange Points

Again, the effective potential U(q) is given by

$$H(q,p) = \frac{1}{2} \left((p_1 - q_2)^2 + (p_2 + q_1)^2 \right) - \frac{\mu}{|q - M|} - \frac{1 - \mu}{|q - E|} - \frac{q_1^2 + q_2^2}{2}$$
$$= \frac{1}{2} |\tilde{p}|^2 + U(q).$$

There are 5 critical points for $0 < \mu \le 1/2$, called **Lagrange points**.

- 1. $U(\ell_1) < U(\ell_2) \le U(\ell_3) < U(\ell_4) = U(\ell_5)$.
- 2. ℓ_1,ℓ_2,ℓ_3 lies on the q_1 -axis, while ℓ_4,ℓ_5 are not.
- 3. The topology of Hill's region changes through $H(\ell_i)$'s.

Dongho Lee Three-Body Problem August 21st, 2025 30/43

Hill's Region

Figure 8: Hill's regions for energies in $(-\infty, H(\ell_1))$, $(H(\ell_1), H(\ell_2))$, $(H(\ell_2), H(\ell_3))$ and $(H(\ell_3), H(\ell_4))$.

For $c < H(\ell_1)$, Moser regularization for each component is still valid.

For higher energies, other regularization methods are developed.

(Birkhoff regularization, Kustaanheimo-Stiefel regularization, etc.)

Contact Structure and Convexity

The Moser-regularized Hamiltonian is $K: T^*S^3 \to \mathbb{R}$.

Topologically, $K^{-1}(c) \simeq S^3 \times S^2$. (sphere sub-bundle over the base.)

- \bullet $K^{-1}(c)$ fiberwise star-shaped \Rightarrow $K^{-1}(c)$ is naturally a contact manifold, and X_K is parallel to its Reeb flow.
 - \Rightarrow We can use tools of symplectic geometry, e.g. SH.
- ullet $K^{-1}(c)$ fiberwise convex $\Rightarrow X_K$ is the Finsler geodesic flow of some Finsler metric on S^3 , and $\mu_{CZ} \geq 0$.

Contact Structure and Convexity

- [AFvKP12] For planar problem, there exists $\varepsilon>0$ such that for $c< H(\ell_1)+\varepsilon$, (except $c=H(\ell_1)$) bounded components of Hill's region are fiberwise star-shaped.
- [CJK20] Same result for the spatial CRTBP.
- [Nic21] For $c > H(\ell_4)$, there exists an orbit with negative action, i.e., there is no contact structure.
- We expect that there exists a contact structure for $c < H(\ell_2)$, but don't have any clue for a simple proof.
- [Cho24] For planar problem, for c<-3, the moon's component is fiberwise convex.
- [CLS25] (In preparation) For spatial problem, for $c \le c_0 < H(\ell_1)$ where $c_0 \simeq -3.284 + 0.854 \mu$, the moon's component is fiberwise convex.

Birkhoff Shooting Method

Theorem (Birkhoff)

For $0<\mu<1$ and $c< H(\ell_1)$, there exists a solution of CRTBP $(q_1,q_2):[0,\tau]\to\mathbb{R}\times(-\infty,0]$ such that

- 1. $q_2(0) = q_2(\tau) = 0$.
- 2. $q_1'(0) = q_1'(\tau) = 0$.
- 3. $\ell_3 < q_1(0) < -\mu < \ell_1$.

Figure 9: Birkhoff Shooting Method (courtesy of Otto van Koert)

Birkhoff Shooting Method

Some aspects of the Birkhoff shooting method :

- 1. This provides us a periodic orbit, a candidate of a retrograde orbit.
- 2. Analytically, the uniqueness of such orbit is not proven,
- 3. Also, the existence of a direct orbit with this method is not proven.
- 4. [JvK25] provides some optimistic numerical results.

Some candidates of the definition of retrograde orbit :

- The orbit with the smallest period (or shortest length).
- The orbit obtained by Birkhoff shooting method.
- The orbit with Conley-Zehnder index 2.
- The orbit bifurcated from the retrograde orbit of RKP.

Lyapunov Orbits

Theorem

For any $0 < \mu < 1$, there exists $\varepsilon = \varepsilon(\mu) > 0$ such that for energy level $H(\ell_i) < c < H(\ell_i) + \varepsilon$ for i = 1, 2, 3,

- ullet there exists a smooth family of periodic orbits γ_i^c with energy c.
- for each t, $\gamma_i^c(t)$ converges uniformly to ℓ_i at $c \to H(\ell_i)$.

We call these Lyapunov orbits.

- Experimentally, the Lyapunov orbits survive for higher energy.
- There exists a family of orbits which bifurcates between the Lyapunov orbit and vertical collision orbit, called halo orbits.

Euler Problem,

Hill's Lunar Problem

Euler Problem

Assumption: Two centers are fixed.

$$H(q,p) = \frac{|p|^2}{2} - \frac{\mu}{|q-M|} - \frac{1-\mu}{|q-E|}.$$

This system is expected to give some insight for CRTBP above $H(\ell_1)$.

- 1. Unique critical energy $c_J = -1 2\sqrt{\mu(1-\mu)}$.
- 2. Hill's region is always bounded.
- 3. Moser regularization is valid for $c < c_J$.
- 4. [Kim18] Computation of CZ-indices of the planar problem under c_J .

Periodic Orbits

The Euler problem is an integrable system.

- 1. Angular momentum L_1 comes from S^1 -symmetry.
- 2. Another classical invariant G.

Inner and outer collisions are nondegenerate, works as γ_{\pm} in RKP.

38/43

Figure 10: Hill's region and collision orbits.

Hill's Lunar Problem

Assumption : μ is small, and we're very close to the moon.

- 1. Translate M to 0.
- 2. Take Taylor expansion of 1/|q-M| and 1/|q-E|-terms.
- 3. Rescale by factor $\mu^{2/3}$.

$$H_{HL}(q,p) = \frac{|p|^2}{2} - \frac{1}{|q|} + (p_1q_2 - p_2q_1) - q_1^2 + \frac{q_2^2}{2} + \frac{q_3^2}{2}.$$

We call this Hill's lunar problem.

Practically, this provides a very nice approximation of CRTBP for $\mu \ll 1.$

Hill's Lunar Problem

- 1. One critical energy c_0 , and two critical points on q_1 -axis.
- 2. Moser regularization is valid for $c < c_0$.
- 3. [Lee17] In planar problem, under c_0 , the level set is fiberwise convex.
- 4. [Ayd23] Linear symmteries are given by $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$.

We still have retrograde, direct, vertical collision and Lyapunov orbits.

However the system is not integrable, so any kind of analytic computation is very hard.

Hill's Lunar Problem

Figure 11: Hill's region of Hill's Lunar problem.

Bifurcation Diagram

[AFvK+] gave a bifurcation diagram from γ_-^3 to γ_+^5 based on numerics.

Further Works

- 1. Classify and compute the indices of non-degenerate orbits. (Spatial Euler problem, Hill's lunar problem, etc.)
- 2. Using the result to investigate the bifurcation of orbits.
- 3. Application to the three-body problem.

Thank you for your attention!

References i

- Peter Albers, Joel W. Fish, Urs Frauenfelder, and Otto van Koert, The Conley-Zehnder indices of the rotating Kepler problem, Math. Proc. Cambridge Philos. Soc. **154** (2013), no. 2, 243–260. MR 3021812
- Cengiz Aydin, Urs Frauenfelder, Otto van Koert, Dayoung Koh, and Agustin Moreno, *Symplectic geometry and space mission design*.
- Peter Albers, Urs Frauenfelder, Otto van Koert, and Gabriel P. Paternain, *Contact geometry of the restricted three-body problem*, Comm. Pure Appl. Math. **65** (2012), no. 2, 229–263. MR 2855545
- Cengiz Aydin, *The linear symmetries of Hill's lunar problem*, Arch. Math. (Basel) **120** (2023), no. 3, 321–330. MR 4549765
- Kai Cieliebak, Urs Frauenfelder, and Otto van Koert, *The Finsler geometry of the rotating Kepler problem*, Publ. Math. Debrecen **84** (2014), no. 3-4, 333–350. MR 3231519

References ii

- Sunghae Cho, Global hypersurfaces of section on convex hypersurfaces, fiberwise convexity of restricted 3-body problem, Ph.D. thesis, Seoul National University, 2024.
- WanKi Cho, Hyojin Jung, and GeonWoo Kim, *The contact geometry of the spatial circular restricted 3-body problem*, Abh. Math. Semin. Univ. Hambg. **90** (2020), no. 2, 161–181. MR 4217949
- Sunghae Cho, Dongho Lee, and Bumjoon Sohn, *Fiberwise convexity* of spatial restricted three-body problem, in preparation, 2025.
- Chankyu Joung and Otto van Koert, Computational symplectic topology and symmetric orbits in the restricted three-body problem, Nonlinearity 38 (2025), no. 2, Paper No. 025015, 27. MR 4855741
- Seongchan Kim, *Dynamical convexity of the Euler problem of two fixed centers*, Math. Proc. Cambridge Philos. Soc. **165** (2018), no. 2, 359–384. MR 3834005

References iii

Dongho Lee, Conley-zehnder indices of spatial rotating kepler problem, 2025.

Robert Nicholls, Second species orbits of negative action and contact forms in the circular restricted three-body problem, 2021.

Appendix. Moser Regularization

Recipe for the Moser regularization of the Kepler problem

- Take energy level $E = E_0$.
- Define

$$\tilde{K}_0(q,p) = \frac{1}{2} (|q|(E(q,p)) - E_0) + 1)^2 = \frac{1}{2} \left(\frac{1}{2} (|p|^2 - 2E_0)|q| \right).$$

- ullet Take switch map $ilde{K}(q,p)= ilde{K}_0(p,-q).$
- ullet Apply stereographic projection to $T^*S^3_r$ and get

$$K(x,y) = \frac{r^4}{2}|y|^2.$$

• RKP and CRTBP can be regularized in the same way.

Appendix. Finsler Metric

A **Finsler metric** is a continuous function $\mathcal{F}:TM\to [0,\infty)$ such that

- 1. $\mathcal{F}(v+w) \leq \mathcal{F}(v) + \mathcal{F}(w)$.
- 2. $\mathcal{F}(\lambda v) = \lambda v$ if $\lambda \geq 0$.
- 3. $\mathcal{F}(v) > 0$ unless v = 0.
- 4. \mathcal{F} is smooth on $TM \setminus i_0 M$.

We can define

$$g_v(X,Y) = \frac{1}{2} \frac{\partial^2}{\partial s \partial t} \mathcal{F}(v + sX + tY)^2 \bigg|_{s,t=0}.$$

Example. Smooth submanifolds of a normed vector space.